
Hans de Goede
Presented by

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

Kernel driver prog. day 5

Linux has a notion of so called bit arrays, these
are represented as an array of unsigned longs

These may contain more then sizeof(long)
bits / be larger then one unsigned long

Helper macros for these are:

BITS_TO_LONGS

BIT_WORD

BIT_MASK

Bit arrays

set_bit(int nr, volatile unsigned long * addr);

clear_bit(int nr, volatile unsigned long * addr);

Note these functions do NOT give any re-
ordering or memory barries guarantees

Atomic bit operations (1)

Given the following C-code:
a = 5;

b = 7;

func();

c = 8;

 The compiler is free to generate code for:
b = 7;

a = 5;

func();

c = 8;

Re-ordering

If 2 cpu-cores are executing code accessing the
same memory address; and

CPU-1 writes 0xdeadbeaf to that address;
immediately followed by;

CPU-2 reading that address; then

CPU-2 may or may not read 0xdeadbeaf

Because the write / read operations may be re-
ordered by the memory subsystem

Memory barriers (1)

CPU-2 seeing 0xdeadbeaf can be assured by:

Using a general memory barrier instruction
after the write on CPU-1; and

A general memory barrier before the read on
CPU-2; and

Ensuring that the general memory barrier on
CPU-2 executes after the general memory
barrier on CPU-1

Memory barriers (2)

Linux mutexes / spinlocks imply memory
barriers taking care of this for you, so normally
you do not need to worry about this as long as
you use proper locking

For much more details see:

https://www.kernel.org/doc/Documentation/memory-
barriers.txt

Memory barriers (3)

int test_and_set_bit(int nr, volatile unsigned
long * addr);

int test_and_clear_bit(int nr, volatile unsigned
long * addr);

Note these functions imply a memory-barrier,
but do not give any re-ordering guarantees

Atomic bit operations (2)

It is useful to schedule some work to be done
in another thread, the main reasons for this:

Quickly complete something which another task is
waiting on to unblock that task

Schedule work which involves sleeping from an
atomic context

The Linux kernel has a mechanism called
workqueues for this

Workqueues

#include <linux/workqueue.h>

#define READ_ERROR 0

#define WRITE_ERROR 1

struct driver_data {

 struct work_struct error_recovery_work;

 unsigned long flags;

}

Workqueue example (1)

irq_return_t driver_irq(int irq, void *dev_id) {

 struct driver_data *d = dev_id;

 if (read_status_flags(d) & ST_FL_READ_ERR)

 set_bit(READ_ERROR, &d flags);→
 if (read_status_flags(d) & ST_FL_READ_ERR)

 set_bit(READ_ERROR, &d flags);→
 schedule_work(&d error_recovery_work);→
 return IRQ_HANDLED;

}

Workqueue example (2)

static void error_recovery(struct work_struct *w) {

 struct driver_data *d =

 container_of(w, struct driver_data,

 error_recovery_work);

 if (test_and_clear_bit(READ_ERROR, &d flags))→
 do_read_error_recovery(d);

 if (test_and_clear_bit(WRITE_ERROR, &d flags))→
 do_write_error_recovery(d);

}

Workqueue example (3)

int driver_probe(…) {

 …

 INIT_WORK(&d error_recovery_work,→
 error_recovery);

 …

}

Workqueue example (4)

Questions?

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

hdegoede@redhat.com
Contact:

Hands on:
Coding time!

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License

hdegoede@redhat.com
Contact:

