f

Kernel driver prog. day o

Presented by
Hans de Goede

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License



Bit arrays

e Linux has a notion of so called bit arrays, these
are represented as an array of unsigned longs

e These may contain more then sizeof(long)
bits / be larger then one unsigned long

e Helper macros for these are:

e BITS_TO_LONGS
« BIT_ WORD
« BIT_MASK

fedora



Atomic bit operations (1)

e set_bit(int nr, volatile unsigned long * addr);
e clear_bit(int nr, volatile unsigned long * addr);

e Note these functions do NOT give any re-
ordering or memory barries guarantees

fedora



Re-ordering

e Given the following C-code:
a=>5;
b=7,
func();
C=3;
e The compiler is free to generate code for:
b=7,
a=>5;
func();

c=38 fedora:



Memory barriers (1)

e If 2 cpu-cores are executing code accessing the
same memory address; and

e CPU-1 writes Oxdeadbeaf to that address;
immediately followed by;

e CPU-2 reading that address; then
e CPU-2 may or may not read Oxdeadbeaf

e Because the write / read operations may be re-
ordered by the memory subsystem

fedora



Memory barriers (2)

@ CPU-2 seeing Oxdeadbeaf can be assured by:

e Using a general memory barrier instruction
after the write on CPU-1; and

e A general memory barrier before the read on
CPU-2; and

e Ensuring that the general memory barrier on
CPU-2 executes after the general memory
barrier on CPU-1

fedora



Memory barriers (3)

e Linux mutexes / spinlocks imply memory
barriers taking care of this for you, so normally
you do not need to worry about this as long as
you use proper locking

e For much more details see:

https://www.kernel.org/doc/Documentation/memory-
barriers.txt

fedora



Atomic bit operations (2)

e int test_and_set_bit(int nr, volatile unsigned
long * addr);

e int test_and_clear_bit(int nr, volatile unsigned
long * addr);

e Note these functions imply a memory-barrier,
but do not give any re-ordering guarantees

fedora



Workqueues

e [t is useful to schedule some work to be done
in another thread, the main reasons for this:

e Quickly complete something which another task is
waiting on to unblock that task

e Schedule work which involves sleeping from an
atomic context

e The Linux kernel has a mechanism called
workgueues for this

fedora



Workqueue example (1)

#include <linux/workqueue.h>
#define READ_ERROR O

#define WRITE_ERROR 1
struct driver_data {

struct work_struct error_recovery_work;
unsigned long flags;

fedora



Workqueue example (2)

irg_return_t driver_irq(int irg, void *dev_id) {

struct driver data *d = dev id;

if (read_status_flags(d) & ST_F

__READ_ERR)

set_bit(READ_ERROR, &d > f

ags);

if (read_status_flags(d) & ST_FL_READ_ERR)

set_bit(READ_ERROR, &d > f

schedule_work(&d - error_recovery_work);

return IRQ_HANDLED;

lags);

fedora

f

™
™



Workqueue example (3)

static void error_recovery(struct work_struct *w) {

struct C

river data *d =

container_of(w, struct driver_data,

error_recovery_work);

if (test_and_clear_bit(READ_ERROR, &d - flags))
do_read_error_recovery(d);

if (test_and_clear_bit(WRITE_ERROR, &d —flags))
do_write_error_recovery(d);

fedora

f

™
™



Workqueue example (4)

int driver_probe(...) {

INIT_WORK(&d —»error_recovery_work,
error_recovery),

fedora



Questions”?

Contact;

hdegoede@redhat.com

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License



Hands on:;
Coding timel

Contact;

hdegoede@redhat.com

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported License



